MAYBE 1.686 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/Monad.hs
H-Termination of the given Haskell-Program with start terms could not be shown:



HASKELL
  ↳ LR

mainModule Monad
  ((zipWithM :: Monad c => (d  ->  a  ->  c b ->  [d ->  [a ->  c [b]) :: Monad c => (d  ->  a  ->  c b ->  [d ->  [a ->  c [b])

module Monad where
  import qualified Maybe
import qualified Prelude

  zipWithM :: Monad c => (a  ->  b  ->  c d ->  [a ->  [b ->  c [d]
zipWithM f xs ys sequence (zipWith f xs ys)


module Maybe where
  import qualified Monad
import qualified Prelude



Lambda Reductions:
The following Lambda expression
\xsreturn (x : xs)

is transformed to
sequence0 x xs = return (x : xs)

The following Lambda expression
\xsequence cs >>= sequence0 x

is transformed to
sequence1 cs x = sequence cs >>= sequence0 x



↳ HASKELL
  ↳ LR
HASKELL
      ↳ BR

mainModule Monad
  ((zipWithM :: Monad b => (a  ->  c  ->  b d ->  [a ->  [c ->  b [d]) :: Monad b => (a  ->  c  ->  b d ->  [a ->  [c ->  b [d])

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  zipWithM :: Monad a => (d  ->  b  ->  a c ->  [d ->  [b ->  a [c]
zipWithM f xs ys sequence (zipWith f xs ys)



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule Monad
  ((zipWithM :: Monad d => (a  ->  b  ->  d c ->  [a ->  [b ->  d [c]) :: Monad d => (a  ->  b  ->  d c ->  [a ->  [b ->  d [c])

module Monad where
  import qualified Maybe
import qualified Prelude

  zipWithM :: Monad a => (b  ->  d  ->  a c ->  [b ->  [d ->  a [c]
zipWithM f xs ys sequence (zipWith f xs ys)


module Maybe where
  import qualified Monad
import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ Narrow
              ↳ Narrow

mainModule Monad
  (zipWithM :: Monad a => (d  ->  b  ->  a c ->  [d ->  [b ->  a [c])

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  zipWithM :: Monad d => (a  ->  c  ->  d b ->  [a ->  [c ->  d [b]
zipWithM f xs ys sequence (zipWith f xs ys)



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_psPs(:(wv130, wv131), wv8, h) → new_psPs(wv131, wv8, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs(:(wv1110, wv1111), wv70, h) → new_gtGtEs(wv1111, wv70, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ DependencyGraphProof
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) → new_sequence(wv3, wv41, wv51, ty_Maybe, h, ba, bb)
new_sequence1(wv3, wv41, wv51, wv10, h, ba, bb) → new_sequence(wv3, wv41, wv51, ty_IO, h, ba, bb)
new_psPs0(wv3, wv41, wv51, h, ba, bb) → new_sequence(wv3, wv41, wv51, ty_[], h, ba, bb)
new_sequence(wv3, :(wv40, wv41), :(wv50, wv51), ty_[], h, ba, bb) → new_gtGtEs1(wv3, wv41, wv51, h, ba, bb)
new_gtGtEs1(wv3, wv41, wv51, h, ba, bb) → new_psPs0(wv3, wv41, wv51, h, ba, bb)
new_gtGtEs1(wv3, wv41, wv51, h, ba, bb) → new_gtGtEs1(wv3, wv41, wv51, h, ba, bb)
new_sequence(wv3, :(wv40, wv41), :(wv50, wv51), ty_Maybe, h, ba, bb) → new_gtGtEs0(wv3, wv41, wv51, h, ba, bb)
new_sequence(wv3, :(wv40, wv41), :(wv50, wv51), ty_IO, h, ba, bb) → new_sequence(wv3, wv41, wv51, ty_IO, h, ba, bb)

The TRS R consists of the following rules:

new_gtGtEs3([], wv70, h) → []
new_psPs4(:(wv110, wv111), wv70, wv8, h) → new_psPs5(wv70, wv110, new_psPs1(new_gtGtEs3(wv111, wv70, h), h), wv8, h)
new_psPs5(wv70, wv110, wv13, wv8, h) → :(:(wv70, wv110), new_psPs2(wv13, wv8, h))
new_gtGtEs2(:(wv70, wv71), wv3, wv41, wv51, h, ba, bb) → new_psPs3(wv3, wv41, wv51, wv70, new_gtGtEs2(wv71, wv3, wv41, wv51, h, ba, bb), h, ba, bb)
new_psPs2(:(wv130, wv131), wv8, h) → :(wv130, new_psPs2(wv131, wv8, h))
new_gtGtEs3(:(wv1110, wv1111), wv70, h) → new_psPs2(:(:(wv70, wv1110), []), new_gtGtEs3(wv1111, wv70, h), h)
new_psPs1(wv8, h) → wv8
new_psPs3(wv3, wv41, wv51, wv70, wv8, h, ba, bb) → new_psPs4(new_sequence0(wv3, wv41, wv51, ty_[], h, ba, bb), wv70, wv8, h)
new_psPs2([], wv8, h) → wv8
new_gtGtEs2([], wv3, wv41, wv51, h, ba, bb) → []
new_psPs4([], wv70, wv8, h) → new_psPs1(wv8, h)

The set Q consists of the following terms:

new_gtGtEs3([], x0, x1)
new_gtGtEs2([], x0, x1, x2, x3, x4, x5)
new_gtGtEs2(:(x0, x1), x2, x3, x4, x5, x6, x7)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(:(x0, x1), x2, x3)
new_psPs3(x0, x1, x2, x3, x4, x5, x6, x7)
new_psPs2([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1, x2)
new_psPs4(:(x0, x1), x2, x3, x4)
new_gtGtEs3(:(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 1 less node.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
QDP
                          ↳ UsableRulesProof
                        ↳ QDP
                        ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_sequence(wv3, :(wv40, wv41), :(wv50, wv51), ty_IO, h, ba, bb) → new_sequence(wv3, wv41, wv51, ty_IO, h, ba, bb)

The TRS R consists of the following rules:

new_gtGtEs3([], wv70, h) → []
new_psPs4(:(wv110, wv111), wv70, wv8, h) → new_psPs5(wv70, wv110, new_psPs1(new_gtGtEs3(wv111, wv70, h), h), wv8, h)
new_psPs5(wv70, wv110, wv13, wv8, h) → :(:(wv70, wv110), new_psPs2(wv13, wv8, h))
new_gtGtEs2(:(wv70, wv71), wv3, wv41, wv51, h, ba, bb) → new_psPs3(wv3, wv41, wv51, wv70, new_gtGtEs2(wv71, wv3, wv41, wv51, h, ba, bb), h, ba, bb)
new_psPs2(:(wv130, wv131), wv8, h) → :(wv130, new_psPs2(wv131, wv8, h))
new_gtGtEs3(:(wv1110, wv1111), wv70, h) → new_psPs2(:(:(wv70, wv1110), []), new_gtGtEs3(wv1111, wv70, h), h)
new_psPs1(wv8, h) → wv8
new_psPs3(wv3, wv41, wv51, wv70, wv8, h, ba, bb) → new_psPs4(new_sequence0(wv3, wv41, wv51, ty_[], h, ba, bb), wv70, wv8, h)
new_psPs2([], wv8, h) → wv8
new_gtGtEs2([], wv3, wv41, wv51, h, ba, bb) → []
new_psPs4([], wv70, wv8, h) → new_psPs1(wv8, h)

The set Q consists of the following terms:

new_gtGtEs3([], x0, x1)
new_gtGtEs2([], x0, x1, x2, x3, x4, x5)
new_gtGtEs2(:(x0, x1), x2, x3, x4, x5, x6, x7)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(:(x0, x1), x2, x3)
new_psPs3(x0, x1, x2, x3, x4, x5, x6, x7)
new_psPs2([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1, x2)
new_psPs4(:(x0, x1), x2, x3, x4)
new_gtGtEs3(:(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                          ↳ UsableRulesProof
QDP
                              ↳ QReductionProof
                        ↳ QDP
                        ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_sequence(wv3, :(wv40, wv41), :(wv50, wv51), ty_IO, h, ba, bb) → new_sequence(wv3, wv41, wv51, ty_IO, h, ba, bb)

R is empty.
The set Q consists of the following terms:

new_gtGtEs3([], x0, x1)
new_gtGtEs2([], x0, x1, x2, x3, x4, x5)
new_gtGtEs2(:(x0, x1), x2, x3, x4, x5, x6, x7)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(:(x0, x1), x2, x3)
new_psPs3(x0, x1, x2, x3, x4, x5, x6, x7)
new_psPs2([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1, x2)
new_psPs4(:(x0, x1), x2, x3, x4)
new_gtGtEs3(:(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_gtGtEs3([], x0, x1)
new_gtGtEs2([], x0, x1, x2, x3, x4, x5)
new_gtGtEs2(:(x0, x1), x2, x3, x4, x5, x6, x7)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(:(x0, x1), x2, x3)
new_psPs3(x0, x1, x2, x3, x4, x5, x6, x7)
new_psPs2([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1, x2)
new_psPs4(:(x0, x1), x2, x3, x4)
new_gtGtEs3(:(x0, x1), x2, x3)



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
QDP
                                  ↳ QDPSizeChangeProof
                        ↳ QDP
                        ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_sequence(wv3, :(wv40, wv41), :(wv50, wv51), ty_IO, h, ba, bb) → new_sequence(wv3, wv41, wv51, ty_IO, h, ba, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
QDP
                          ↳ UsableRulesProof
                        ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_psPs0(wv3, wv41, wv51, h, ba, bb) → new_sequence(wv3, wv41, wv51, ty_[], h, ba, bb)
new_sequence(wv3, :(wv40, wv41), :(wv50, wv51), ty_[], h, ba, bb) → new_gtGtEs1(wv3, wv41, wv51, h, ba, bb)
new_gtGtEs1(wv3, wv41, wv51, h, ba, bb) → new_psPs0(wv3, wv41, wv51, h, ba, bb)
new_gtGtEs1(wv3, wv41, wv51, h, ba, bb) → new_gtGtEs1(wv3, wv41, wv51, h, ba, bb)

The TRS R consists of the following rules:

new_gtGtEs3([], wv70, h) → []
new_psPs4(:(wv110, wv111), wv70, wv8, h) → new_psPs5(wv70, wv110, new_psPs1(new_gtGtEs3(wv111, wv70, h), h), wv8, h)
new_psPs5(wv70, wv110, wv13, wv8, h) → :(:(wv70, wv110), new_psPs2(wv13, wv8, h))
new_gtGtEs2(:(wv70, wv71), wv3, wv41, wv51, h, ba, bb) → new_psPs3(wv3, wv41, wv51, wv70, new_gtGtEs2(wv71, wv3, wv41, wv51, h, ba, bb), h, ba, bb)
new_psPs2(:(wv130, wv131), wv8, h) → :(wv130, new_psPs2(wv131, wv8, h))
new_gtGtEs3(:(wv1110, wv1111), wv70, h) → new_psPs2(:(:(wv70, wv1110), []), new_gtGtEs3(wv1111, wv70, h), h)
new_psPs1(wv8, h) → wv8
new_psPs3(wv3, wv41, wv51, wv70, wv8, h, ba, bb) → new_psPs4(new_sequence0(wv3, wv41, wv51, ty_[], h, ba, bb), wv70, wv8, h)
new_psPs2([], wv8, h) → wv8
new_gtGtEs2([], wv3, wv41, wv51, h, ba, bb) → []
new_psPs4([], wv70, wv8, h) → new_psPs1(wv8, h)

The set Q consists of the following terms:

new_gtGtEs3([], x0, x1)
new_gtGtEs2([], x0, x1, x2, x3, x4, x5)
new_gtGtEs2(:(x0, x1), x2, x3, x4, x5, x6, x7)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(:(x0, x1), x2, x3)
new_psPs3(x0, x1, x2, x3, x4, x5, x6, x7)
new_psPs2([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1, x2)
new_psPs4(:(x0, x1), x2, x3, x4)
new_gtGtEs3(:(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
QDP
                              ↳ QReductionProof
                        ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_psPs0(wv3, wv41, wv51, h, ba, bb) → new_sequence(wv3, wv41, wv51, ty_[], h, ba, bb)
new_sequence(wv3, :(wv40, wv41), :(wv50, wv51), ty_[], h, ba, bb) → new_gtGtEs1(wv3, wv41, wv51, h, ba, bb)
new_gtGtEs1(wv3, wv41, wv51, h, ba, bb) → new_psPs0(wv3, wv41, wv51, h, ba, bb)
new_gtGtEs1(wv3, wv41, wv51, h, ba, bb) → new_gtGtEs1(wv3, wv41, wv51, h, ba, bb)

R is empty.
The set Q consists of the following terms:

new_gtGtEs3([], x0, x1)
new_gtGtEs2([], x0, x1, x2, x3, x4, x5)
new_gtGtEs2(:(x0, x1), x2, x3, x4, x5, x6, x7)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(:(x0, x1), x2, x3)
new_psPs3(x0, x1, x2, x3, x4, x5, x6, x7)
new_psPs2([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1, x2)
new_psPs4(:(x0, x1), x2, x3, x4)
new_gtGtEs3(:(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_gtGtEs3([], x0, x1)
new_gtGtEs2([], x0, x1, x2, x3, x4, x5)
new_gtGtEs2(:(x0, x1), x2, x3, x4, x5, x6, x7)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(:(x0, x1), x2, x3)
new_psPs3(x0, x1, x2, x3, x4, x5, x6, x7)
new_psPs2([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1, x2)
new_psPs4(:(x0, x1), x2, x3, x4)
new_gtGtEs3(:(x0, x1), x2, x3)



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
QDP
                                  ↳ UsableRulesReductionPairsProof
                        ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_psPs0(wv3, wv41, wv51, h, ba, bb) → new_sequence(wv3, wv41, wv51, ty_[], h, ba, bb)
new_sequence(wv3, :(wv40, wv41), :(wv50, wv51), ty_[], h, ba, bb) → new_gtGtEs1(wv3, wv41, wv51, h, ba, bb)
new_gtGtEs1(wv3, wv41, wv51, h, ba, bb) → new_psPs0(wv3, wv41, wv51, h, ba, bb)
new_gtGtEs1(wv3, wv41, wv51, h, ba, bb) → new_gtGtEs1(wv3, wv41, wv51, h, ba, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

new_sequence(wv3, :(wv40, wv41), :(wv50, wv51), ty_[], h, ba, bb) → new_gtGtEs1(wv3, wv41, wv51, h, ba, bb)
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [25]:

POL(:(x1, x2)) = x1 + x2   
POL(new_gtGtEs1(x1, x2, x3, x4, x5, x6)) = x1 + x2 + 2·x3 + x4 + x5 + x6   
POL(new_psPs0(x1, x2, x3, x4, x5, x6)) = x1 + x2 + 2·x3 + x4 + x5 + x6   
POL(new_sequence(x1, x2, x3, x4, x5, x6, x7)) = x1 + x2 + 2·x3 + 2·x4 + x5 + x6 + x7   
POL(ty_[]) = 0   



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ UsableRulesReductionPairsProof
QDP
                                      ↳ DependencyGraphProof
                        ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_psPs0(wv3, wv41, wv51, h, ba, bb) → new_sequence(wv3, wv41, wv51, ty_[], h, ba, bb)
new_gtGtEs1(wv3, wv41, wv51, h, ba, bb) → new_psPs0(wv3, wv41, wv51, h, ba, bb)
new_gtGtEs1(wv3, wv41, wv51, h, ba, bb) → new_gtGtEs1(wv3, wv41, wv51, h, ba, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ UsableRulesReductionPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
QDP
                                          ↳ NonTerminationProof
                        ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs1(wv3, wv41, wv51, h, ba, bb) → new_gtGtEs1(wv3, wv41, wv51, h, ba, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_gtGtEs1(wv3, wv41, wv51, h, ba, bb) → new_gtGtEs1(wv3, wv41, wv51, h, ba, bb)

The TRS R consists of the following rules:none


s = new_gtGtEs1(wv3, wv41, wv51, h, ba, bb) evaluates to t =new_gtGtEs1(wv3, wv41, wv51, h, ba, bb)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_gtGtEs1(wv3, wv41, wv51, h, ba, bb) to new_gtGtEs1(wv3, wv41, wv51, h, ba, bb).





↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
QDP
                          ↳ UsableRulesProof
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) → new_sequence(wv3, wv41, wv51, ty_Maybe, h, ba, bb)
new_sequence(wv3, :(wv40, wv41), :(wv50, wv51), ty_Maybe, h, ba, bb) → new_gtGtEs0(wv3, wv41, wv51, h, ba, bb)

The TRS R consists of the following rules:

new_gtGtEs3([], wv70, h) → []
new_psPs4(:(wv110, wv111), wv70, wv8, h) → new_psPs5(wv70, wv110, new_psPs1(new_gtGtEs3(wv111, wv70, h), h), wv8, h)
new_psPs5(wv70, wv110, wv13, wv8, h) → :(:(wv70, wv110), new_psPs2(wv13, wv8, h))
new_gtGtEs2(:(wv70, wv71), wv3, wv41, wv51, h, ba, bb) → new_psPs3(wv3, wv41, wv51, wv70, new_gtGtEs2(wv71, wv3, wv41, wv51, h, ba, bb), h, ba, bb)
new_psPs2(:(wv130, wv131), wv8, h) → :(wv130, new_psPs2(wv131, wv8, h))
new_gtGtEs3(:(wv1110, wv1111), wv70, h) → new_psPs2(:(:(wv70, wv1110), []), new_gtGtEs3(wv1111, wv70, h), h)
new_psPs1(wv8, h) → wv8
new_psPs3(wv3, wv41, wv51, wv70, wv8, h, ba, bb) → new_psPs4(new_sequence0(wv3, wv41, wv51, ty_[], h, ba, bb), wv70, wv8, h)
new_psPs2([], wv8, h) → wv8
new_gtGtEs2([], wv3, wv41, wv51, h, ba, bb) → []
new_psPs4([], wv70, wv8, h) → new_psPs1(wv8, h)

The set Q consists of the following terms:

new_gtGtEs3([], x0, x1)
new_gtGtEs2([], x0, x1, x2, x3, x4, x5)
new_gtGtEs2(:(x0, x1), x2, x3, x4, x5, x6, x7)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(:(x0, x1), x2, x3)
new_psPs3(x0, x1, x2, x3, x4, x5, x6, x7)
new_psPs2([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1, x2)
new_psPs4(:(x0, x1), x2, x3, x4)
new_gtGtEs3(:(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
QDP
                              ↳ QReductionProof
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) → new_sequence(wv3, wv41, wv51, ty_Maybe, h, ba, bb)
new_sequence(wv3, :(wv40, wv41), :(wv50, wv51), ty_Maybe, h, ba, bb) → new_gtGtEs0(wv3, wv41, wv51, h, ba, bb)

R is empty.
The set Q consists of the following terms:

new_gtGtEs3([], x0, x1)
new_gtGtEs2([], x0, x1, x2, x3, x4, x5)
new_gtGtEs2(:(x0, x1), x2, x3, x4, x5, x6, x7)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(:(x0, x1), x2, x3)
new_psPs3(x0, x1, x2, x3, x4, x5, x6, x7)
new_psPs2([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1, x2)
new_psPs4(:(x0, x1), x2, x3, x4)
new_gtGtEs3(:(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_gtGtEs3([], x0, x1)
new_gtGtEs2([], x0, x1, x2, x3, x4, x5)
new_gtGtEs2(:(x0, x1), x2, x3, x4, x5, x6, x7)
new_psPs5(x0, x1, x2, x3, x4)
new_psPs2(:(x0, x1), x2, x3)
new_psPs3(x0, x1, x2, x3, x4, x5, x6, x7)
new_psPs2([], x0, x1)
new_psPs1(x0, x1)
new_psPs4([], x0, x1, x2)
new_psPs4(:(x0, x1), x2, x3, x4)
new_gtGtEs3(:(x0, x1), x2, x3)



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
QDP
                                  ↳ QDPSizeChangeProof
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) → new_sequence(wv3, wv41, wv51, ty_Maybe, h, ba, bb)
new_sequence(wv3, :(wv40, wv41), :(wv50, wv51), ty_Maybe, h, ba, bb) → new_gtGtEs0(wv3, wv41, wv51, h, ba, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:


Haskell To QDPs